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Abstract 

Pairs trading is a well-established statistical arbitrage strategy that is most often conducted in 2 

dimensions with two stocks as a pair using the distance method. However, the profitability of the 

distance method has proven to be on a decline in the recent years. Hence, the copula approach is 

proposed to eliminate the need of implying normal distribution of stock returns, which is 

inevitable in the distance method, as well as to capture the dependency structure precisely by 

providing an explicit joint distribution function. However, using a single stock as a benchmark 

for another could be misleading as only a portion of the full dependency information is being 

utilized. Therefore, this paper extends the application of copula to propose a multi-dimensional 

pairs trading framework that involves the trading of three or more stocks as a group to increase 

dependency information and measure relative pricing more comprehensively. With more 

dependency information being utilized, practitioners could potentially benefit from more trading 

opportunities, reliable trading signals and diversification effects. The overall results show that 

the multi-dimensional copula strategy is able to identify more trading opportunities and generate 

a higher return than those of the 2-dimensional copula and distance strategies. 
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Multi-Dimensional Pairs Trading Using Copulas 

1. Introduction 

Traditionally, pairs trading is conducted in 2 dimensions with a pair of stocks that have 

demonstrated strong historical co-movements. It is generally defined as a statistical arbitrage 

strategy that capitalizes on the temporary relative mispricing between two stocks whose prices 

are expected to converge due to strong historical co-movements. To generate excess return, one 

would simultaneously long the relatively undervalued stock and short the relatively overvalued 

stock whenever temporary relative mispricing occurs. As opposite positions are taken for two 

stocks that move together, this strategy is said to be market risk-free. Then, the positions are 

reversed after the stock prices converged. Thus, we can infer that the profitability of a pairs 

trading strategy is dependent on two factors: the identification of high-quality pairs whose prices 

have a high tendency to converge and the modeling of dependency structure between the two 

stocks to measure the degree of relative mispricing. This research paper aims to introduce multi-

dimensional pairs trading, which is a new concept that involves the trading of three or more 

stocks as a group. Furthermore, it is expected to be a generalization of the 2-dimensional pairs 

trading techniques that offers richer information about the dependency structure and utilizes the 

information to measure the degree of relative mispricing so that trading positions could be 

entered in a more informed and less risky manner.  

Among all conventional methods of 2-dimensional pairs trading, the distance method 

stands out as the most popular method. This popularity is attributed to the use of simple linear 

correlation coefficient as a measure of dependence which makes implementation convenient. 

Researchers have extended the studies of this method to larger samples and documented 

significant excess returns (Andrada et al., 2005; Gatev et al., 2006; Perlin, 2009; Pizzutilo, 2013). 

However, Do and Faff (2010) found that the profitability of the distance method has been 

declining over a long sample period. The mean excess return per month drops from 1.24% for 

the period of year 1962-1988 to 0.33% for the period of year 2003-2009. This significant drop in 

profitability was attributed to an increase in the proportion of pairs which diverge (Do and Faff, 

2010). This risk of divergence is also known as arbitrage risk because the strategy is no longer 
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market risk-free when pairs diverge, which is undesirable as the first factor that determines the 

profitability of a pairs trading strategy is convergence of stock prices (De Long et al., 1999). 

Besides, the distance method implies that the financial data are normally distributed when 

capturing the dependency structures, ignoring non-linear associations (Liew and Wu, 2013). In 

reality, financial data are rarely normally distributed (Cont, 2001). Furthermore, negative 

skewness and excess kurtosis are being repeatedly observed in most financial assets (Kat, 2003; 

Crook and Moreira, 2011). Therefore, implying a symmetric distribution of spread around the 

mean of 0 may result in false trading opportunities that seem to be profitable initially but 

eventually turn out to be otherwise (Bock and Mestel, 2008). 

In view of the aforementioned shortcomings of conventional methods of 2-dimensional 

pairs trading, the copula method is proposed. The copula method possesses two major 

advantages. Firstly, it separates the estimations of marginal distributions and joint distribution 

into two different procedures. This eliminates the need to imply normal marginal distributions of 

stock returns, which is inevitable in the conventional distance method. In fact, copula is a 

powerful and flexible tool that is able to capture the dependency structure accurately regardless 

of the forms of marginal distribution (Liew and Wu, 2013; Xie et al., 2014). This means that the 

copula method is a generalization of conventional pairs trading methods. For instance, the 

distance method is a special case of the copula method because the copula method is equivalent 

to the distance method when financial data are normally distributed. Nonetheless, the copula 

method remains applicable with any other forms of marginal distribution. The second advantage 

is that the copula connects the individual marginal distributions to the joint distribution of stock 

returns by providing an explicit function to describe dependence, which gives a more precise 

understanding of the dependency structure. 

However, in all 2-dimensional pairs trading methods, only one stock is benchmarked 

against another and the relative mispricing is measured solely based on the common portion of 

their full dependency information while the uncommon portion, which also plays a role in the 

determination of the intrinsic value of a stock, is not being taken into account. Thus, there could 

be an improvement if the uncommon portion of their full dependency information is utilized in 

benchmarking. When an additional stock is being considered together with the existing pair of 
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stocks, some of the aforementioned uncommon portion could be revealed as the uncommon 

portion of the existing pair of stocks may be dependent on the additional stock. This could 

provide new information about the behaviors of the pair of stocks. Through this means, multi-

dimensional pairs trading is able to increase dependency information to be used for 

benchmarking and measure the degree of relative mispricing more reliably.  

Furthermore, in 2-dimensional pairs trading, the relative mispricing is measured locally 

as the price movement of a stock could be due to its idiosyncratic risk. In this case, when it is 

being benchmarked against another stock of the same pair, it could be deemed as a potential 

arbitrage opportunity. On the other hand, the degree of relative mispricing is being measured 

more comprehensively in the case of multi-dimensional pairs trading, where a stock is being 

benchmarked against a group of stocks. In other words, a stock may be locally overvalued when 

benchmarked against another stock of the same pair but it is intrinsically fairly-valued when 

benchmarked against a group of stocks that have strong co-movements. Therefore, this kind of 

false trading signal could potentially be avoided in multi-dimensional pairs trading.  

Last but not least, multi-dimensional pairs trading could reduce risk through 

diversification. Although pairs trading has always been claimed as a market risk-free strategy, it 

is not completely so because two or more stocks that are perfectly correlated do not exist. 

Despite pairs trading strategies only consider stocks that demonstrate strong co-movements or 

are highly and positively correlated, there is still room for diversification effects as the number of 

stocks increases, especially when the existing number of stocks is significantly low (which is two 

in 2-dimensional pairs trading strategies).  

Since the 2-dimensional copula method generalizes the conventional methods of 2-

dimensional pairs trading, the copula method should be applied to multi-dimensional pairs 

trading to ensure that there is no loss of generality. In fact, the multi-dimensional copula method 

is actually a generalization of pairs trading methods because the 2-dimensional copula method is 

just a special case of the multi-dimensional copula method. 

Motivated by these inspiring ideas, the contributions of this paper to pairs trading are 

two-fold. Firstly, it proposes an innovative concept – multi-dimensional pairs trading, which is 

expected to be more profitable than the 2-dimensional pairs trading strategies. Secondly, as there 
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are scant literatures about the use of copula in pairs trading, this paper promotes the use of 

copula by demonstrating and extending the application of copula to multi-dimensional pairs 

trading. 

In the subsequent parts of this paper, we will discuss the framework of our methods and 

respective trading strategies under Section 2, followed by discussion and interpretation of results 

under Section 3. Lastly, we conclude the paper and provide directions for future studies under 

Section 4. 

 

2. Methodology 

The approaches we cover in this paper consist of two common stages: formation period 

and trading period. In the formation period, the historical data of the underlying stocks are 

studied to produce useful information about the behaviors of the stocks as a pair or as a group. 

For example, in the case of 2-dimensional copula method, the best-fitted marginal cumulative 

distributions are first estimated and then the optimal copula that best describes the dependency 

structure is determined. Subsequently, in the trading period, trading strategies are implemented 

based on the insights generated in the formation period to test for profitability.  

 

2.1 Two-Dimensional Conventional Method 

2.1.1 Framework 

Out of several conventional methods, we adopt the most popular conventional method – 

the distance method. The implementation here is in accordance with Gatev et al. (2006) except 

for the pairs selection process. According to Gatev et al. (2006), the pairs are first selected based 

on the minimum distance criterion, which is equivalent to maximum correlation. However, we 

did not include a pairs selection process in this study and the stock candidates are pre-selected. 

In our approach, the standardized price difference between the two stocks is known as 

spread and it is implied to be symmetrically and normally distributed around the long-term mean 

value of 0. Therefore, when the prices diverge and spread deviates from 0, one stock is 
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overvalued relative to another and the latter is undervalued relative to the former. Hence, the 

greater the absolute value of spread, the higher the degree of relative mispricing. This price 

divergence is expected to be temporary as the spread has a long-run mean value of 0. Hence, the 

prices are expected to converge to restore the spread to its long-term mean value of 0. This 

fundamental mechanism is also known as mean-reverting behavior. 

Thus, the historical prices of stocks are first normalized and the spread is scaled to 0 at 

the beginning of the formation period. Then, the difference between the normalized prices are 

calculated. In addition, the standard deviation of spread is calculated based on the stock prices in 

the formation period and it is used to measure the degree of relative mispricing in the trading 

period.  

 

2.1.2 Trading Strategy 

At the beginning of the trading period, the spread is rescaled to 0. When the spread 

deviates from 0 by more than two times the standard deviation of spread, equal long/short 

positions are simultaneously opened. The rationale is that, two standard deviation covers 95% of 

the distribution of spread. Hence, any value of spread above (below) two positive (negative) 

standard deviation indicates significant overvaluation (undervaluation). Then, the trading 

positions are closed when the spread reverts to the mean value of 0. 

 

2.2 Two-Dimensional Copula  

2.2.1 Framework 

Copula separates the estimations of individual marginal distributions and joint 

distribution into two different procedures, which makes it a powerful tool as it eliminates the 

need to imply normal distribution of stock returns. In addition, copula links the individual 

marginal distributions to their joint distribution by providing an explicit function to describe their 

dependency structure. Thus, the focus here is to optimally model the joint distribution of stock 

returns and measure the degree of relative mispricing based on their joint distribution. 
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Sklar’s theorem (1959) states that, if H is a 2-dimensional joint cumulative distribution 

function for random variables X1  and X2 , with respective continuous marginal cumulative 

distributions F1(X1) and F2(X2), then there exists a 2-copula C such that 

H(x1, x2) = C(F1(x1), F2(x2)) = P(X1 ≤ x1, X2 ≤ x2) 

Next, let U1 = F1(X1) and U2 = F2(X2) 

C(u1, u2) = P(F1(X1) ≤ u1, F2(X2) ≤ u2) = H(F1
−1(u1), F2

−1(u2)) 

Then, the conditional probabilities can be found by taking first derivative of the copula function. 

P(U1 ≤ u1|U2 = u2) =
∂C(u1, u2)

∂u2
= P(X1 ≤ x1|X2 = x2) 

P(U2 ≤ u2|U1 = u1) =
∂C(u1, u2)

∂u1
= P(X2 ≤ x2|X1 = x1) 

Assume that X and Y are a pair of selected stocks with joint distribution H and marginal 

cumulative distributions FX(Rt
X)  and  FY(Rt

Y)  respectively, where Rt
X and Rt

Y  represent their 

respective returns for a given day t, then according to Sklar’s theorem (1959), there exists a 2-

copula function such that 

H(rt
X, rt

Y) = C (Fx(rt
X), FY(rt

Y)) = P(Rt
X ≤ rt

X, Rt
Y ≤ rt

Y) 

Subsequently, let U1 = FX(Rt
X) and U2 = FY(Rt

Y) 

C(u1, u2) = P(FX(Rt
X) ≤ u1, FY(Rt

Y) ≤ u2) = H(FX
−1(u1), FY

−1(u2)) 

Therefore, the first step is to estimate their best-fitted marginal cumulative distributions, 

Rt
X and Rt

Y, and their respective parameters. Then, different categories of copula are applied to 

capture their optimal joint distribution and the one that that best describes the dependency 

structure is selected. After that, first derivatives of the copula function are taken to calculate the 

conditional probabilities, which are then used to measure the degrees of relative mispricing, Mt
X|Y

 

and Mt
Y|X

. 
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Mt
X|Y

=
∂C(u1, u2)

∂u2
= P(Rt

X ≤ rt
X|Rt

Y = rt
Y) 

Mt
Y|X

=
∂C(u1, u2)

∂u1
= P(Rt

Y ≤ rt
Y|Rt

X = rt
X) 

where 0 ≤ Mt
X|Y

≤ 1 and 0 ≤ Mt
Y|X

≤ 1. 

Generally speaking, a conditional probability of 0.5 means that the underlying stock is 

fairly-valued relative to another stock that is being conditional on. On the other hand, when the 

conditional probability is higher than 0.5, the underlying stock is overvalued relative to another 

stock that is being conditional on. Conversely, when the conditional probability is lower than 0.5, 

the underlying stock is undervalued relative to another stock that is being conditional on. The 

higher (lower) the conditional probability, the higher the degree of relative overvaluation 

(undervaluation). 

 

2.2.2 Trading Strategy 

The conditional probabilities, Mt
X|Y

 and Mt
Y|X

, only measure the degrees of relative 

mispricing for a single day. Thus, it is necessary to sum up the degree of relative mispricing for 

each day to determine the overall degree of relative mispricing. Let MI2D
X  and MI2D

Y  be the 

overall mispricing indexes of stock X and stock Y respectively. Since a conditional probability 

of 0.5 means that the two underlying stocks are fairly-valued, then only (Mt
X|Y

− 0.5)  and 

(Mt
Y|X

− 0.5) are added to MI2D
X  and MI2D

Y  respectively. At the beginning of the trading period, 

MI2D
X  and MI2D

Y  are scaled to 0. Assume that T2D and SL2D (T for trigger and SL for stop-loss) are 

the respective threshold levels of relative mispricing for opening trading positions, and closing 

trading positions to prevent substantial losses when stocks diverge. In addition, trading positions 

are closed when MI2D
X  returns to 0 if they are opened based on MI2D

X  or when MI2D
Y  returns to 0 if 

they are opened based on MI2D
Y . Thus, there are four different scenarios of opening and closing 

trading positions, which are summarized in Table 1. 
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[Insert Table 1 here.] 

Note that all long and short positions are taken in equal weightages to ensure that the 

trades are market risk-free. At the end of the trading period, all trading positions are closed 

regardless of the values of MI2D
X  and MI2D

Y . It should be noted that T2D and SL2D are both pre-

specified values. Hence, there are infinite combinations and back-testing should be performed to 

determine the optimal values of T2D and SL2D. 

 

2.3 Multi-Dimensional Copula  

2.3.1 Framework 

For simplicity, we adopt 3-dimensional copula to represent multi-dimensional copula. 

Similar to the 2-dimensional copula method, the focus here is to optimally model the joint 

distribution of returns of stocks X, Y and Z and measure the degrees of relative mispricing based 

on their joint distribution. Therefore, we first apply Sklar’s theorem (1959) in 3 dimensions. 

H(rt
X, rt

Y, rt
Z) = C (Fx(rt

X), FY(rt
Y), FZ(rt

Z)) = P(Rt
X ≤ rt

X, Rt
Y ≤ rt

Y, Rt
Z ≤ rt

Z) 

Then, the marginal cumulative distributions of Rt
X, Rt

Y, and Rt
Z as well as their respective 

parameters are estimated. Subsequently, we apply the Bernstein copula (Sancetta and Satchell, 

2004) to estimate their joint distribution. The Bernstein copula generalizes the families of 

polynomial copulas such that 

CB(u1, … , uk) = ∑ … ∑ ⍺ (
v1

m1
, … ,

vk

mk
) Pv1, mj

(u1) … Pvk, mj
(uk) 

vkv1

 

where ⍺ (
v1

m1
, … ,

vk

mk
)  is a real valued constant indexed by (v1, … , vk), 

vj ∈ ℕ+ such that 0 ≤  vj ≤ mj, 

Pvj, mj
(uj) ≡ (

mj

vj
) (uj)

vj
(1 − uj)

mj−vj
 and 
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uj = Fj(xj). 

It should be noted that practitioners are free to choose the values of v and m. In this paper, 

a value of 10 is chosen for all m’s, and all v’s start from 1 with a step increment of 1. Thus, in 

the case of three stocks, the Bernstein copula and the degrees of mispricing are defined as 

follows 

CB(u1, u2, u3) = ∑ … ∑ ⍺ (
v1

10
, … ,

v3

10
) Pv1,10(u1) … Pv3,10(u3) 

v3v1

 

Mt
X|Y,Z

=
∂CB(u1, u2, u3)

∂u2 ∂u3
= P(Rt

X ≤ rt
X|Rt

Y = rt
Y, Rt

Z = rt
Z) 

Mt
Y|X,Z

=
∂CB(u1, u2, u3)

∂u1 ∂u3
= P(Rt

Y ≤ rt
Y|Rt

X = rt
X, Rt

Z = rt
Z) 

Mt
Z|X,Y

=
∂CB(u1, u2, u3)

∂u1 ∂u2
= P(Rt

Z ≤ rt
Z|Rt

X = rt
X, Rt

Y = rt
Y) 

Similarly, a conditional probability of 0.5 means that the underlying stock is fairly-valued 

relative to the other two stocks that are being conditional on. On the other hand, when the 

conditional probability is higher than 0.5, the underlying stock is overvalued relative to the other 

two stocks that are being conditional on. Conversely, when the conditional probability is lower 

than 0.5, the underlying stock is undervalued relative to the other two stocks that are being 

conditional on. The higher (lower) the conditional probability, the higher the degree of relative 

overvaluation (undervaluation). 

 

2.3.2 Trading Strategy 

The overall mispricing indexes of stocks X, Y and Z are defined as MIMD
X , MIMD

Y  and 

MIMD
Z . They are determined by adding (Mt

X|Y,Z
− 0.5) ,  (Mt

Y|X,Z
− 0.5) and  (Mt

Z|X,Y
− 0.5)  to 

MIMD
X , MIMD

Y  and MIMD
Z  every day respectively. Note that MIMD

X , MIMD
Y  and MIMD

Z  are scaled to 0 

at the beginning of the trading period. Similar to the case of 2-dimensional copula, assume that 
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TMD  and SLMD  are the respective threshold levels of relative mispricing for opening trading 

positions, and closing trading positions to prevent substantial losses when stocks diverge. 

Furthermore, trading positions are closed when the corresponding mispricing index returns to 0. 

There are six different scenarios of opening and closing trading positions, which are summarized 

in Table 2. 

[Insert Table 2 here.] 

Note that in each scenario, all long and short positions are taken in equal weightages to 

ensure that the trades are market risk-free. At the end of the trading period, all trading positions 

are closed regardless of the values of MIMD
X , MIMD

Y  and MIMD
Z . It should be noted that TMD and 

SLMD  are both pre-specified values. Hence, there are infinite combinations and back-testing 

should be performed to determine the optimal values of TMD and SLMD. 

 

3. Empirical Results 

3.1 Data 

Note that we did not include a stocks selection process in this study as each method has 

its own measure of dependence. For demonstration purpose, the stock candidates in this study are 

Oversea-Chinese Banking Corporation (OCBC), United Overseas Bank (UOB) and 

Development Bank of Singapore (DBS). They are all from the banking sector in Singapore and 

are listed as O39, U11 and D05 respectively on the Singapore Exchange (SGX). Furthermore, 

they are very similar in terms of business operations. For instance, while they have their main 

operations in Singapore, they also have relatively smaller operations in many Asian countries.  

The sample period is from 4 January 2010 to 31 December 2014. The daily stock prices 

are extracted from Yahoo Finance. The stock candidates are proven to be highly correlated 

throughout the sample period as shown in Figure 1 and they have an average correlation 

coefficient of 0.9332. The data from the sample period are further divided into 8 time periods, 

with each time period consisting of a formation period and a trading period. The formation 

period is defined as a 12-month period, which is equivalent to 252 days, and the trading period is 
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defined as a 6-month period, which is equivalent to 126 days. Consequently, the number of days 

in a month is taken as 21 days. Note that there is no general guideline for how long each period 

should be fixed at. 

[Insert Figure 1 here.] 

 

3.2 Excess Returns 

 In this paper, we adopt the return on committed capital as our return measurement, which 

means that all money prepared for potential trades is considered in the principal amount even if 

the if the money has not been used to open a position (Gatev et al., 2006). Note that for the 2-

dimensional methods, three possible pairs can be made out of the three stock candidates while 

there is only one possible group for the multi-dimensional method. Therefore, the excess returns 

of 2-dimensional methods are calculated by averaging the excess returns of the three possible 

pairs. Then, for all the aforementioned strategies, the monthly excess returns are calculated by 

compounding daily stock returns over the 21 days in that month. Subsequently, the 6-month 

trading period excess returns are calculated by averaging the six respective monthly excess 

returns.  

 

3.3 Optimization 

  As mentioned earlier, practitioners are free to choose the threshold trigger (T) and stop-

loss (SL) values. However, instead of choosing an arbitrary value, we ran through an 

optimization with 100 combinations of T and SL for every method to locate the optimal values. 

The optimization results for the distance, 2-dimensional copula and multi-dimensional copula 

methods are shown in Table 3, Table 4 and Table 5 respectively. The returns are the averages of 

8-time-period excess returns. The average return that corresponds to the optimal values of T and 

SL is highlighted in bold in each table. Note that for all three methods, the average returns that 

correspond to the selected optimal values may not necessary be the highest. This is to increase 

the representation of the optimal values and to avoid optimal values that give higher returns but 
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are either too high or too low and may only be optimal to this selected sample. After all, the main 

purpose of these optimizations is to locate a range in which the optimal values of T and SL lie.  

[Insert Table 3 here.] 

[Insert Table 4 here.] 

[Insert Table 5 here.] 

 

3.4 Main Results 

 Table 6 shows the 8-time-period average excess returns of the distance, 2-dimensional 

copula and multi-dimensional copula strategies. The excess returns of all 3 strategies are positive 

but only the excess returns of the distance and multi-dimensional copula strategies are significant 

at 10% significance level. In addition, the multi-dimensional copula strategy clearly outperforms 

the 2-dimensional copula and the distance strategies. Meanwhile, the average excess return of 2-

dimensional copula strategy is higher than that of the conventional distance strategy. 

Furthermore, as seen in Figure 2, the cumulative returns of 2-dimensional and multi-dimensional 

copula strategies are increasing consistently while the cumulative return of the distance strategy 

tends to be increasing at a smaller magnitude. Although the cumulative return of 2-dimensional 

copula strategy tends to increase more than that of the multi-dimensional copula strategy, the 

latter shows less variations, indicating that the strategy is less risky.  

[Insert Table 6 here.] 

[Insert Figure 2 here.] 

 Furthermore, Table 7 presents the trading statistics of the 3 pairs trading strategies. It was 

found that the multi-dimensional copula strategy generates the highest average number of trades 

per pair, followed closely by the 2-dimensional copula strategy. This indicates that the copula 

methods are able to identify more trading opportunities than the conventional distance method. 

However, trading positions are open for a longer period of time (in months) for the 2-

dimensional and multi-dimensional copula strategies. Having said that, there is greater certainty 
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about the duration of an open position for the copula strategies as the standard deviations are 

significantly lower than that of the distance method.   

[Insert Table 7 here.] 

 To examine whether the average excess returns generated by the 3 different strategies are 

due to any risk factors, the return series are ran against the Fama-French 3 factors (1993) and the  

Carhart momentum factor (1997), and the results are summarized in Table 8. The results show 

that the risk-adjusted return of the multi-dimensional copula strategy is positive and significant 

the 10% significance level. In addition, it is hardly explained by the risk factors and it is 

consistent with the raw average excess return in Table 6. Meanwhile, the risk-adjusted returns of 

the 2-dimensional copula and distance strategies are 21% and 27% lower than their respective 

raw average excess returns in Table 6, indicating that a relatively larger portion of their raw 

excess returns are explained by risk factors. 

[Insert Table 8 here.] 

 

4. Conclusion 

Pairs trading is a well-known statistical arbitrage strategy that has always been 

implemented in 2 dimensions where two stocks are traded as a pair. Despite having documented 

significant consistent profits over time, there has been a significant decline in its profitability, 

especially the most popular conventional distance method. Thus, the copula method is proposed 

to serve as a solution to the declining profitability of 2-dimensional pairs trading strategies. The 

copula method is able to do so because it eliminates the need to imply that the financial data are 

normally distributed, and it provides an explicit function of joint distribution to describe 

dependence. However, in 2-dimensional pairs trading strategies, only one stock is used as a 

benchmark for another, meaning that only a portion of the full dependency information is 

considered. Therefore, there could be a case where the underlying stock is only locally mis-

valued but intrinsically fairly-valued when it is being benchmarked against a comprehensive 

group of co-moving stocks. In this paper, multi-dimensional pairs trading is proposed to increase 

dependency information and generalize 2-dimensional pairs trading techniques.  
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Other than that, we also recognize the advantages of copula and therefore, have extended 

its application to multi-dimensional pairs trading. In comparison with the distance and 2-

dimensional copula strategies, the multi-dimensional copula strategy has shown the highest 

average excess return and risk-adjusted return. On top of that, the 2-dimensional and multi-

dimensional copula strategies have identified more trading opportunities and are more certain of 

the duration of an open position than the distance strategy.     

Although the results have generally shown that the proposed multi-dimensional pairs 

trading strategy is superior to the 2-dimensional pairs trading strategies, there are certain rooms 

for improvements. For instance, a longer sample period could be adopted to increase the 

credibility of the results as a superior strategy should be able to generate consistent significant 

excess returns over a long period of time. In addition, a stocks selection process could be 

included to demonstrate the ability of the three different strategies to identify high-quality 

converging stocks. For example, the distance method captures only the linear associations as 

simple linear correlation coefficient is used, while the copulas are able to capture both linear and 

non-linear associations between random variables. Furthermore, moving from 2-dimensional 

copula to multi-dimensional copula, there may be an improvement of stocks selection ability as 

more dependency information is being utilized. Owing to processing power constraints, we are 

unable to include these aspects in this study. We believe that these unresolved issues are 

interesting topics that encourage further research and the resolutions of these issues will enhance 

the proposed strategy as well as establish the role of multi-dimensional pairs trading.    
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Table 1. Trade Conditions and Positions for 2-Dimensional Copula 

Open Trade Condition 
Trading Positions 

Close Trade Condition Stop Loss Condition 
Long Short 

MI2D
X > T2D Stock Y Stock X MI2D

X  falls to 0 MI2D
X  rises to SL2D 

MI2D
X < −T2D Stock X Stock Y MI2D

X  rises to 0 MI2D
X  falls to −SL2D 

MI2D
Y > T2D Stock X Stock Y MI2D

Y  falls to 0 MI2D
Y  rises to SL2D 

MI2D
Y < −T2D Stock Y Stock X MI2D

Y  rises to 0 MI2D
Y  falls to −SL2D 
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Table 2. Trade Conditions and Positions for Multi-Dimensional Copula 

Open Trade Condition 
Trading Positions 

Close Trade Condition Stop Loss Condition 
Long Short 

MIMD
X > TMD Stock Y, Stock Z Stock X MIMD

X  falls to 0 MIMD
X  rises to SLMD 

MIMD
X < −TMD Stock X Stock Y, Stock Z MIMD

X  rises to 0 MIMD
X  falls to −SLMD 

MIMD
Y > TMD Stock X, Stock Z Stock Y MIMD

Y  falls to 0 MIMD
Y  rises to SLMD 

MIMD
Y < −TMD Stock Y Stock X, Stock Z MIMD

Y  rises to 0 MIMD
Y  falls to −SLMD 

MIMD
Z > TMD Stock X, Stock Y Stock Z MIMD

Z  falls to 0 MIMD
Z  rises to SLMD 

MIMD
Z < −TMD Stock Z Stock X, Stock Y MIMD

Z  rises to 0 MIMD
Z  falls to −SLMD 
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Table 3. Optimization Result for the Distance Method 

         T       

SL 
1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 

3.00 0.2370% 0.2310% 0.2470% 0.1520% 0.1580% 0.2030% 0.1670% 0.2650% 0.2460% 0.2520% 0.0830% 

3.20 0.2080% 0.2020% 0.2170% 0.1500% 0.1520% 0.1980% 0.1610% 0.2530% 0.2250% 0.2300% 0.0550% 

3.40 0.3170% 0.3110% 0.3140% 0.2270% 0.2300% 0.2760% 0.2490% 0.2850% 0.2670% 0.2810% 0.1550% 

3.60 0.3590% 0.3630% 0.3660% 0.2810% 0.2840% 0.3300% 0.3030% 0.3410% 0.3230% 0.3360% 0.2180% 

3.80 0.3590% 0.3520% 0.3560% 0.2710% 0.2740% 0.3190% 0.3160% 0.3540% 0.3280% 0.3410% 0.2240% 

4.00 0.3630% 0.3660% 0.3690% 0.2850% 0.2870% 0.3330% 0.3300% 0.3670% 0.3410% 0.3550% 0.2380% 

4.20 0.3610% 0.3630% 0.3660% 0.2810% 0.2840% 0.3300% 0.3270% 0.3640% 0.3380% 0.3510% 0.2340% 

4.40 0.3600% 0.3540% 0.3570% 0.2720% 0.2750% 0.3210% 0.3180% 0.3550% 0.3280% 0.3420% 0.2250% 

4.60 0.3570% 0.3510% 0.3540% 0.2690% 0.2720% 0.3180% 0.3150% 0.3520% 0.3260% 0.3390% 0.2220% 

4.80 0.3330% 0.3610% 0.3480% 0.2810% 0.2780% 0.3240% 0.3210% 0.3570% 0.3300% 0.3430% 0.2250% 

5.00 0.3320% 0.3530% 0.3360% 0.2790% 0.2760% 0.3220% 0.3190% 0.3550% 0.3280% 0.3410% 0.2230% 
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Table 4. Optimization Result for the Two-Dimensional Copula Method 

         T       

SL 
0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 

1.50 -0.184% 0.125% 0.098% 0.168% 0.353% 0.206% 0.198% 0.244% 0.177% 0.056% -0.007% 

1.60 -0.404% -0.314% -0.194% -0.227% -0.053% -0.105% -0.137% -0.277% -0.243% -0.385% -0.379% 

1.70 -0.116% -0.042% -0.062% -0.041% 0.077% 0.010% 0.006% -0.076% -0.070% -0.142% -0.083% 

1.80 0.009% 0.074% 0.079% 0.081% 0.079% 0.086% 0.090% -0.001% 0.000% -0.138% -0.120% 

1.90 0.325% 0.418% 0.451% 0.467% 0.449% 0.340% 0.340% 0.336% 0.352% 0.224% 0.151% 

2.00 -0.005% 0.061% 0.166% 0.195% 0.293% 0.266% 0.270% 0.168% 0.179% 0.037% -0.042% 

2.10 -0.097% -0.080% 0.060% 0.151% 0.264% 0.302% 0.255% 0.224% 0.242% 0.153% 0.090% 

2.20 -0.228% -0.218% 0.032% 0.150% 0.276% 0.271% 0.250% 0.214% 0.236% 0.124% 0.106% 

2.30 -0.150% -0.101% 0.137% 0.052% 0.179% 0.125% 0.141% 0.107% 0.146% 0.112% 0.032% 

2.40 -0.070% 0.001% 0.000% -0.090% 0.028% -0.070% -0.060% -0.043% -0.024% -0.051% -0.090% 

2.50 0.025% 0.096% 0.132% 0.045% 0.022% -0.040% -0.038% -0.015% 0.008% -0.007% 0.048% 
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Table 5. Optimization Result for the Multi-Dimensional Copula Method 

         T       

SL 
0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 

1.00 0.1845% 0.1715% 0.1772% 0.1983% 0.1110% 0.0650% 0.1010% 0.0380% -0.0200% 0.0030% -0.0160% 

1.10 0.4077% 0.3342% 0.3783% 0.4302% 0.3340% 0.3830% 0.4040% 0.4560% 0.4430% 0.4880% 0.4620% 

1.20 0.5195% 0.4881% 0.4746% 0.5151% 0.4990% 0.5340% 0.5170% 0.5240% 0.4950% 0.4920% 0.4620% 

1.30 0.3697% 0.3723% 0.3629% 0.4082% 0.3640% 0.3760% 0.3730% 0.3800% 0.3570% 0.3430% 0.3210% 

1.40 0.5126% 0.5268% 0.5096% 0.5285% 0.4730% 0.4510% 0.4890% 0.4910% 0.4820% 0.4600% 0.4670% 

1.50 0.5402% 0.4817% 0.4930% 0.5195% 0.4960% 0.4820% 0.5220% 0.4810% 0.3820% 0.3830% 0.3390% 

1.60 0.4699% 0.4602% 0.4341% 0.4532% 0.4294% 0.4248% 0.4408% 0.4564% 0.4563% 0.4571% 0.4531% 

1.70 0.3152% 0.3000% 0.2934% 0.2967% 0.3046% 0.3297% 0.3303% 0.3245% 0.3009% 0.3127% 0.3045% 

1.80 0.1803% 0.1801% 0.1948% 0.2226% 0.1825% 0.1908% 0.2137% 0.2327% 0.2061% 0.2263% 0.1800% 

1.90 -0.1123% -0.0996% -0.0853% -0.0598% -0.1383% -0.1153% -0.1083% -0.0911% -0.1024% -0.0983% -0.1256% 

2.00 0.0796% 0.0513% 0.0281% 0.0649% 0.0207% 0.0264% 0.0424% 0.0492% 0.0152% 0.0154% 0.0211% 
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Table 6. Comparison of Excess Returns of Different Pairs Trading Strategies 

 
Distance Two-Dimensional Copula Multi-Dimensional Copula 

Average excess returns 0.0037* 0.0047 0.0052* 

t-Statistic 1.6715 1.6592 1.7322 

Skewness 1.3313 -0.4593 0.9197 

Minimum -0.0229 -0.0535 -0.02425 

Maximum 0.0548 0.0572 0.05413 

* represents 10% significance level. 

 

Table 7. Comparison of Trading Statistics of Different Pairs Trading Strategies 

 
Distance Two-Dimensional Copula Multi-Dimensional Copula 

Average no. of pairs traded per trading period 2.25 3 1 

Average no. of trades per pair 1.0417 6.7917 6.7932 

Standard Dev of number of round trips per pair 0.7506 2.1260 2.6121 

Average time pairs are open in months 2.2321 4.2639 3.3330 

Standard Deviation of time open, per pair, in months 1.8106 0.5384 0.7300 
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Table 8. Risk-Adjusted Returns of Different Pairs Trading Strategies 

 
Distance Two-Dimensional Copula Multi-Dimensional Copula 

 
Coefficient t-statistics Coefficient t-statistics Coefficient t-statistics 

Alpha 0.0027 1.0306 0.0037 1.0403 0.0050* 1.8570 

Mkt-RF -0.0001 -0.3160 0.0002 0.3709 -0.0003 -0.7186 

SMB -0.0003 -0.3143 -0.0010 -0.6861 0.0006 0.4997 

HML 0.0006 0.5150 0.0010 0.5668 0.0006 0.4391 

WML 0.0012 1.5546 -0.0001 -0.1074 -0.0011 -1.3113 

* represents 10% significance level. 
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Figure 1. Stock Prices over Time 
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Figure 2. Cumulative Returns over Time 
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